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Abstract

Solutions of the equation e2u(*) + zu(2) + qu(l) + gju - 8,2zu = 0, where
a, B1, 822 are constants, €2 << 1, and z is the independent variable are obtained
using the Laplace integral technique. This equation describes the propagation
of high frequency electrostatic waves near plasma resonance in a magnetized
plasma with a longitudinal density gradient and is a generalization of an
equation studied by Wasow and by Rabenstein inlthe context of boundary layer
phenomena. The solutions of this fourth order equation in which the associated
second order equation (i.e., €2 = 0) exhibits both a singularity (at z = 0) and
a turning point (at z = B;/B8,2) fall readily into two classes. One class re-
sembles Airy functions and exists only for €2 not equal to zero. In the other
class, the solutions are related to confluent hypergeometric functions and can
be viewed as solutions of the second order equation with small corrections
proportional to €2. Using the integral representations of solutions it is
demonstrated that each class of solutions can generate the other when the inde-
pendent variable crosses the singular point. This is the physical phenomenon of
mode conversion. Asymptotic descriptions of both classes of solutions are given
and the form of the solutions near the singular point is expressed as a power

series.

PACS number: 52.35.Fp
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1. Introduction

This paper investigates the solutions of a fourth order differential
equation which arises in the description of high frequency electrostatic waves
near plasma resonance in a magnetized plasma with a zero order density gradient
along the magnetic field. The behavior of the electrostatic potential is

described by Poisson's equation which can be written as

Veg s V=i(/c) VL xk-A, (1.1)

where k is the plasma dielectric tensor, ¢ the electric potential, A the vector
potential, w the angular frequency of oscillation and c¢ the speed of light.

A harmonic time dependence of the form exp(-iwt) is assumed. In (1.1) the term
containing the vector potential can be viewed as a driving source term, which
can be physically identified with an externally launched electromagnetic wave,
as might be the case in a laboratory or ionospheric experiment. From this point
of view (1.1) can be solved for interesting physical applications by obtaining
the appropriate Green's function, a task which requires knowledge of the solu-

tions of the associated homogeneous equation

VekVp=0. (1.2)
When thermal corrections associated with the motion of plasma along the magnetic
field are retained, the plasma dielectric tensor becomes a second order differential

: . . . 1
operator and (1.2) can be written in dimensionless form as

gzu(“) + zu(z) + au(l) + Bju - Bzzzu =0 . (1.3)
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To obtain (1.3) it is assumed that the plasma has a linear density gradient
with scale length L along the magnetic field direction. This assumption is
appropriate for many physical applications and retains the important physical
processes. In (1.3) u is the electric potential suitably normalized, and

z is the distance along the magnetic field normalized to the density scale

length L. The small parameter

€2 = (kpl)-? , ' (1.4)

in which kD is the Debye wave number. For typical ionospheric plasmas the
parameter €2 can be less than 10", The other parameters in the plasma have

the values

a=1; (1.5)
B1 = (k,L)2R .2/ (w? - 2.2) ; (1.6)
B2 = (w/ae)261 , (1.7)

where Qe is the electron cyclotron angular frequency and k, is the fixed wave
number perpendicular to the magnetic field. In obtaining solutions of (1.3) we
do not restrict ourselves to the parameter values given in (1.5)-(1.7). We do,
however, assume that all parameters are real and that e¢2, 8, and B, are posi-
tive. These assumptions apply to a plasma in which the wave frequency is

larger than the electron gyrofrequency (i.e., w > Qe).
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Equation (1.3) supports two distinct classes of solutions: thermal
modes and cold modes. The first of these classes represents short wavelength
modes in the sense that these solutions exist only when g2 (and hence kD‘z)
is not zero. The prototype equation for this class is obtained from (1.3)

by setting 8, and 8,° equal to zero,

e2u() + 202 4 4y () 2 g | (1.8)

Equation (1.8) approximates (1.3) whenever the term e2u(#) js 1arge in com-
parison with (8 u - Bp%zu). In this situation the solutions of (1.3) can be
obtained from the solutions of (1.8) by adding corrections proportional to

B; and B,2. In the WKB sense the thermal class solutions are short wavelength
because the term ezu(“) in (1.3) can be large in comparison with Bju and

Bzzzu. As shown in Sec. 3, the solutions of (1.8) are related to Airy functions

since they are proportional to the (a - 2) derivative of Airy functions of
iﬂi negative argument when o is an integer.

| The second class of solutions associated with (1.3) is comprised of cold
plasma modes in the sense that these solutions exist even when e’ (and hence

[ kD'?) is equal to zero. The prototype equation for the cold mode class is

obtained from (1.3) by setting € = 0,
zu(2) + qu(1) 4 gru - B2zu = 0 . (1.9)
The solutions of (1.9) are related to confluent hypergeometric functions. When

the term ¢2u(®) is small, solutions of (1.3) can be obtained from solutions of

(1.9) by adding small corrections proportional to €2. In the WKB sense the

- «
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solutions in the cold mode class are long wavelength in that cu) is small
in comparison with the other terms in (1.3)

Solutions in the two classes are generally distinguished by the disparity
in their wavelengths. However, near plasma resonance (z = 0), the WKB wave-
lengths of the two modes become comparable and mode conversion occurs. That is,
solutions of one class generate solutions of the other class. This mode con-
version process is clearly exhibited by solutions obtained in this study.

The second order equation (1.9) obtained from (1.3) by setting el = 0
exhibits both a singularity at z = 0 and a turning point at z = B1/B82°. The
existence of the turning point distinguishes (1.3) from an equation previously
studied by Wasow2 and by Rabenstein.3 The results obtained by these authors can
be recovered in the limit 8, + 0. In the plasma application the singularity
corresponds to plasma resonance and the turning point to upper hybrid resonance.
As shown in Sec. 5 the existence of the turning point profoundly affects the
structure of the cold plasma modes and allows for the existence of solutions
which exhibit no mode conversion for certain restricted parameter values.

The paper is organized as follows. In Sec. 2 we introduce integral repre-
sentations for the solutions of (1.3) and describe the contours associated with
the solution set. In Sec. 3 the solutions corresponding to the thermal modes
are obtained. In Sec. 4 expressions for the solutions corresponding to the
cold plasma modes are derived. In Sec. 5, the mode conversion process and the
linear independence of the solutions is discussed. Finally, in Sec. 6 the

principal findings are summarized.
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2. General Properties of Solutions

Since all of the coefficients of u, and its derivatives in (1.3) are
linear in the independent variable z, general solutions may be found in the
form of Laplace integrals. Following Coddington and Levinson,4 but using the

kernel exp(-sz) in the Laplace integral instead of exp(sz), we obtain solutions

of (1.3) in the form

S
u(a,81,8,62,2) = [ {e 3%/P(s) texpl-f {Q(t)/P(t)}dtlds ,
C
where

P(t) = t2 - B2 ;

Q(t) = e2t* - at + By .

The contours C in (2.1) are chosen such that, at the endpoints of the contours,

the following condition is satisfied

-SZ

S
e > exp[-f {Qt)/P(t)}dt] = 0 .

Using (2.2) and (2.3) we obtain

s s e2t" - at + By
J @Pyat = [ [ ] dt
t2 - 322

= e2(s3/3 + By%s) - (a/2)an(s? - By?)

+ 8 anlrs - B)/(s + B8],

2.1

(2.2)

(2.3)

(2.4)




B = (e2B,3 + B1/8By)/2 . (2.6)

Inserting (2.5) into (2.1) the solutions can be written as

us=f(s + B8)"* (s - 8,)% exp[-e2s3/3 - sz] ds (2.7)
C
where

3 z =z + 22822 , (2.8)
8 a, = a/2 -1+ 8, (2.9)
' a =af2-1-8. (2.10)
;ﬁ ‘ The endpoints of the contours C are chosen to satisfy the condition

(s + 82 * Bs - 8)%? 7 Bexp[-e253/3 - sz] = 0 . (2.11)

It is worth noting that the basic equation (1.3) is invariant under the

transformation

((1, Bl) 82’ 52: Z) g (0., 'Bl) 52: '62: —Z). (2.12)

Thus another family of solutions of (1.3) is given by ]
L
2 2 )
¢(ar Bl: 82) €%, Z) = u(a, -Bl) 82) -E7, "Z) 1
) ! (s + 8,07 (s - B)™* exp[e?s3/3 + sz] ds, (2.13)
N

where the endpoints of the contours C' satisfy the condition

P

/2 - B af2 +

(s + 8)° Bexp[ezs3/3 +sz] =0. (2.14)

(s - B2)
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In the following we investigate the functions u as defined by (2.7) in detail
and use the transformation (2.12) to obtain the functions ¢.

The condition (2.11} that must be met at the endpoints of the contours
can be satisfied at large s by choosing the real part of ¢2s3/3 to be positive.

Since we have chosen &2 real, this requirement becomes, with j = 1,2,3,
2n(2-3)/3 - n/6 < arg s < /6 + 2n(2-j)/3 . (2.15)

Thus as shown in Figure 1, there are three open sectors i . s-plane of

angular width n/3 centered about 2n/3, 0, and -27/3 in which the contour may

go to infinity and satisfy the condition (2.11). Since we have stipulated that

a, By, By and €2 are real and positive, the quantity o/2 + B is real and positive.
Thus the condition (2.11) can also be satisfied at the point s = -B, because

the quantity (s + Bz)a/z+6 is then always zero. Since the quantities o _and a_,
while real, are not necessarily integers, the points s = *8, are, in general,
branch points. If the s-plane is cut from B, to positive infinity and from

-8B, to negative infinity along the real axis as shown in Figure 1, the multi-

valued function (s - Bz)a‘(s + 82)a+ in the integrand of (2.7) can be written as

(r1 e 71)% (r, e02)%+

(s - B2)* (s + 8)™*

= expla_gnr; + ia_(8; + 2m) + a,fnry + ia, (6, + 2mm)] , (2.16)

with -m < 65 < m and 0 < 6, < 2n. In (2.16) the various branches of the 2n
functions are represented by the integers m and n which denote various sheets

of the Riemann surface. Each sheet of the Riemann surface can thus be labeled by
the pair of integers (m,n). The s-plane represented in Figure 1 corresponds to

the principal branches of the n functions m=n=0 and is labeled by (0,0}.




The endpoints for contours corresponding to solutions of (1.3) must he
chosen to satisfy the relation given in (2.11). This condition can be met by

choosing the contours that begin and end at infinity in any of the sectors

j 1,2,3 or contours that begin at the branch point s = -8, and end at

s -8, or, alternatively, proceed to infinity within the numbered sectors.
Contours which correspond to solutions in the thermal mode class are shown in
Figure 2. These contours begin at infinity in one sector and end at infinity
in another sector. The solutions obtained from (2.7) by integrating along
these contours are labeled Aj where j refers to the sector opposite the contour.
For example, the contour beginning in sector 2 and ending in sector 1 corres-
ponds to the solution labeled A3. The contour for the solution A, begins in
sector 1 and crosses the branch cut along the negative real axis before pro-
ceeding to infinity in sector 3. Th.s part of the contour for the solution A,
lies in the (1,0) Riemann sheet (i.e., the sheet withm = 1, n = 0) and is thus

shown as a broken line in Fig. 2.

Contours corresponding to solutions in the cold plasma mode class have at

least one end point at s = -B, and are shown in Figs. 3(a) and 3(b). The contour
corresponding to the solution labeled B, starts at the point s = -8,, encircles
the point s = B, in the counter-clockwise direction and ends again at s = -8,.

The contour for B, crosses the branch line along the positive real axis and

thus crosses onto the (0,1) Riemann sheet (i.e., m = 0, n= 1). The portion of
the contour lying in the (0,1) sheet is shown as a dashed line. Contours
corresponding to solutions labeled Bj where j corresponds to the sector in

which they proceed to infinity are illustrated in Figure 3(a). These contours
start at the point s = -8B, and proceed to infinity in sector j in such a fashion

that the radius vector from s = @, to a point on the contour moves in the
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clockwise direction as the point proceeds to infinity. Thus the contour for the
solution B, passes above the point s = B,. Contours for solutions labeled Bj
are shown in Figure 3(b). These contours also start at s = -, but the radius
vector from s = -8, to a point on the contour moves in the counter-clockwise
direction as the point proceeds to infinity in sector j. Thus the contour for
ﬁz passes below the point s = B,. Note that the contour for B] shown in

Figure 3(b) crosses the branch cut along the positive real axis and thus passes
onto the (0,1) Riemann sheet. The portion of the contour on the (0,1) sheet

is again shown as a dashed line. While not illustrated in Figure 3(a), the
contour for the solution Bj would similarly cross the branch cut along the
positive real axis but in a clockwise direction and thus would pass onto the

(0,-1) Riemann sheet. The contours for the solutions Bj and éj G = 1,2,3)

proceed to infinity along the same asymptotic direction in sector j.

Although illustrated only for the principal sheet, the contours corresponding

to solutions Bj’ éj’ B. and Aj may begin on any sheet of the Riemann surface.

(o]
In order to distinguish among functions corresponding to contours on different
sheets of the Riemann surface we introduce the notation X(m,n;p), where X is

any of the solutions Aj’ B,, Bj’ Bj’ m and n are integers specifying the sheet,
and p denotes dependence on the parameters a, 8;, B,, 82, z. In this notation
the values m and n indicate the sheet on which the contour begins. As described
above some contours begin on one sheet and end on an adjacent sheet. Thus

A, (0,0;p) indicates the contour beginning in the sheet with m=0, n=0 but, as
shown in Fig. 2, it ends in the sheet with m=z1l, n=0. For brevity of notation wec
omit the dependence on m and n or other parameters unless they are needed to

clarify the discussion. Furthermore, if the values of m and n are not explicitly

indicated the principal values m=0, n=0 are to be assumed. As an illustration
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we have drawn in Figure 3(a) the contour corresponding to the function B5(0,1).
The contour begins on the sheet (0,1) (and is thus shown dashed) and passes
onto the principal sheet when it crosses the branch cut extending from 8, to
positive infinity. Finally, functions corresponding to contours on different
sheets are simply related. Employing the notation described above and using

(2.16) one can write )

iom i2mna
X(m,n) = e12 M+ o

- X(0,0) . (2.17)
Since the integrand in (2.7) is analytic throughout the entire s-plane

except at the points s = #8,, Cauchy's theorem can be used to establish relation-

ships among the various solutions A., B,, Bj’ and ﬁj by using combinations of

the appropriate contours. In order to facilitate the derivation of relations

among the solutions all of the contours in Figs. 2 and 3 have been combined into

Fig. 4. Refering to Fig. 4 and using Cauchy's theorem the following relationships

can be established

By = By - A (2.18)
By = By + A3(0,1) (2.19)
By = B3(1,0) - A, (2.20)
B3(0,1) = B,(0,1) - A, (2.21)
By = By - A (2.22) -
éj - Bj(0,1) =B (j =1,2,3) (2.23) %
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The relations (2.18), (2.20) and (2.22) can be readily verified by referring
to Fig. 4. To verify the remaining relations it is helpful to picture the
contours for B, or B,(0,1) as crossing the branch cut which extends from B2

- to infinity. The relations (2.18)-(2.23) prove useful in obtaining, among
other things, analytic continuations of the functions B. and éj' Having
determined the set of contours which yield solutions of (1.3) in the integral
representation (2.7) we next proceed to evaluate these solutions in detail.
k- We first examine the solutions Aj before proceeding to investigate the solutions X

B,, B. and B..
°> 75 j
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3. The Solutions Aj

The functionsAj(z) are defined by the integral representation (2.7) in
which the paths of integration are given by the contours C(Aj) as illustrated
in Fig. 2. In this section we first discuss the asymptotic behavior
of the functions Aj(z) for |z| >> e2/3 and then derive a power series expansion which

is particularly useful for small argument, z - 0. 1In both cases it is

convenient to introduce the transformation
o = 52/35; n = 5'2/3i; o, = g(By) = €2/382 , (3.1)

where z = z + 62822 ~ 7z when €2 << 1. Making use of (3.1) in (2.7) we obtain

the integral representation

Aj(n) - ¢~2(a-1)/3 Cf(A )(o - oo)a' (6 + co)o'+ exp[-(c3/3 + on)]do , (3.2) R
J

where C’(Aj) is the image of the contour C(Aj) under the transformation (3.1) |

To evaluate (3.2) asymptotically we employ the saddle point method of .;

integration.5 We note that the derivative of the exponent f(o) = -(c3/3 + on),
namely f'(0) = -(02 + n), when equated to zero yields two roots, or saddle points, q
1

at o = +in?.  For our purpose we discard the minus sign and choose the saddle -j

point

T Y T -
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from which we deduce that, when 6 = 0, oy = in? with n real and positive; when

i ‘ 1/ » .
6 =m, o_ = el” |n|'i = -(-n)* with n real and negative, and finally, when
s

; 1 L . Ces
2n, o = e™/2 [n|2 = -in?, with n again real and positive. These values
s

8
of oy represent the principal saddle points and their location in the o-plane
is illustrated in Fig. 5. The principal saddle points at 6 = 0, m and 2w

correspond respectively to the contours for A3, Ay, and A;. The other choice

1
of sign, o, = -iné, yields nothing new.

The contours C‘(Aj) in (3.2), as shown in Fig. 5, are asymptotic to the rays
with phase 0, 2n/3, and 4n/3. Accordingly, making use of (3.3) one has the

following argument ranges

2n(2-j)/3 + 2n/3 < arg o < Ar/3 + 2n(2-3)/3;
41 (2-3)/3 + /3 < 6 < 5n/3 + 4n(2-j)/3 . (3.4)

As shown in Fig. 5, we can use (3.4) to trace thg path of the saddle point with
lnl fixed as 6 varies from -7 to 3w, or arg os varies from 0 to 2m. It is seen
from Fig. 5 that the chosen saddle point o in (3.3) corresponds to the func-
tions A3, A, and A; and traces a circle of radius o = Inl%. However,
we note that 9 starts just above the right hand branch cut of Fig. 1 and traces
a semi-circle in the upper half of the o-plane, at which point o  crosses the
left-hand branch cut from the principal sheet onto the adjacent sheet of the
Riemann surface, m = 1, n = 0 in accordance with (2.16), and traces a semi-circle
on the lower half of the (1,0)sheet.

We observe from (3.4) that the path of steepest descents for A3 lies entirely
on the principal sheet of the Riemann surface and therefore the saddle point
integration of (3.2) is independent of the branch cuts, which is to say

that the multivalued factors (o - oo)a' and (o + oo)Ot+ in the integrand of (3.2)
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are assigned their principal values. For A, the path of steepest descents

e starts at infinity on the principal sheet and terminates at infinity on the
adjacent m = 1, n = 0 sheet thus crossing the left-hand branch cut. However,
since the saddle point also crosses onto the (1,0) sheet, the saddle point
integration is carried out assuming that the multivalued factors in (3.2)
vary continuously as the saddle point crosses the branch cut. Finally,

as regards the path of steepest descents for A}, we note that it is also
independent of the branch cuts but now lies entirely on the m = 1, n = 0
sheet and, therefore, the saddle point integration of (3.2) evaluates Ay (1,0).

The multivalued factor is evaluated according to (2.16) withm =1, n = 0.

Next, we wish to determine the direction of traversal through the chosen
saddle point o_. In the vicinity of o, we can write -x2 =4 ) - 05)2 + ..

where x is real and positive (x > 0) after passing through the saddle point.

1
In the present instance -% f"(os) =0 = in?, Hence, extracting the square

L L
root and putting w = ¢ - o, we have x= [ f'"(os)]2 W= t(cs)2 w. Ignoring

the plus sign, writing -1 = e " and putting arg x = 0 yields

1,
arg w = T - arg (cs)2 = 3n/4 - 06/4 , (3.9)

which says that, for A; and 6 = 0, arg w = 3n/4; for A, and 0 = 7, arg w = /2,
and for Ay and 6 = 2m, arg w = /4. We note that (3.5) gives, for A3 and A;,

the correct direction of traversal through the saddle point in accordance with

the arrows drawn in Figs. 2 and 5. However, for A, the direction of traversal is

opposite to the direction of the arrow, which gives a minus sign to be attached

to the final result for A,.
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( Asymptotically, |z| >> e2/3 and with €2 << 1 yields z = z + €285 = 2

o and n = 8-2/32. Furthermore, from (2.6) 8 = e28,3/2 + B1/282 = B1/2By = B,
i: from which instead of the exponents a, and o_ defined by (2.9) and (2.10)

) we introduce
a, =af2 -1+8,;a_=af2-1- By -

After this preamble, we can now apply the familiar leading term formula of the
method of steepest descents to compute an asymptotic representation for the
5 functions Aj(n) given by the integral representations (3.2). Thus we obtain,

1L
. for the saddle point o = in* and j = 1,2,3, the leading terms:

(3.6)

A& 0sm v (et B oo+ o) emplEea] (10005, )
% [-£"(o )/2]"
- (-)jeuz(a-l)/3(in%-oo)a-(in%+co)a* e_icg {1+0(1/2)} (3.7)
2 [in*1*
‘ where
: =z @3 = @Y - @), (3.8)
:€ and
L
0 Im(c ) > 0
y = S (3.9)
1 Im(os) <0

el bimibnid
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J ' We have introduced the factor Y to insure the continuity of the function A, as
the saddle point crosses the branch cut along the negative real axis. The general
5 solution Aj(m,n;n) can be found from (3.7) by using (2.17). g
3 ’

3/2
From (3.8) we deduce that for j = 3 and 6 = 0, -if = -(2/3)in / with n
real and positive; for j = 2 and 6 = w, -ig = -(2/3)(-n)3/2 with n real and

/2

negative, and finally, for j = 1 and 6 = 2n, -ig = (2/3)in3 with n again real

PRy W

and positive. Finally, to conclude our asymptotic leading term presentation we

N TRRS

translate (3.7) into a function of z. Recalling that o, = 52/382, we obtain,

after some algebraic manipulations,

- : 1 1 -ig
AJ- (v,0;2z) = (‘)J(izz/E-BQ)a-(iZZ/FH'BZ)a"' '/i?l?%' {1+0(1/¢)} , (3.10)

icz ] X

where the multivalued factor is evaluated as discussed above.

In (3.7) we have retained the term o, even though we have assumed losl >> g
(i.e., |z] >> €2B,2) in order to preserve the topological structure of the cut
o-plane. It is useful to obtain a form for Aj in which o, is ignored in comparison

with 9 but this procedure will alter the topology of the cut o-plane. Ignoring

the o, term in (3.7) is formally equivalent to setting o, = 0 so that there is a

single branch point at the origin rather than two branch points. The multi-

4+ - 5 *7?, Taking the branch cut to lie

valued factor in (3.7) becomes osa'os S

along the positive real axis and the principal sheet to have argument range ®
0 < arg gy < 2n, we see that the argument range for the multivalued factor

a. a, . L .
(os - oo) (os + oo) * in (3.7) exactly coincides with that of osa“aqa* when o _=0.

Noting from (2.17) that A,(1,0;n) = eI?"a*Al(n) we can then write [ ]
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Aj(n) n (=) /;pj 2 1)/3(inz)(1 5/2 -1t ) (3.11) ;}

3

where the phase factors pj are: ;

p3 =pp =1 ;p) =e 2T, (3.12)

LA A AL el A

1
In (3.11) the argument range of (in°) is from 0 to 2m.

As mentioned previously the functions Aj(n) are closely related to Airy

functions. This relationship is best elucidated if we consider the case g, = o,

which is equivalent to setting 8, = B; = 0, with the result that (1.3) reduces

2/3

to (1.8). Putting n = ¢ z in accordance with (3.1) and writing x(n) instead

(3), gy )

of u(z), we obtain from (1.8) the equation + (o - 1)x = 0. When o

is an integer, it can be shown that x(n) is proportional to the (o - 2) derivative q
of any Airy function of negative argument, i.e., any solution of v(ZL nv = 0. ;

When (o - 2} is a negative integer the above statement must be interpreted as

the |a - 2| integral of v(n). The same conclusions follow from the integral
representation (3.2) upon setting o, = 0; that is, Aj(n) in (3.11), when a is

an integer, is proportional to the (a - 2) derivative of the asymptotic leading

basic equation (1.3).

We now proceed to discuss the small argument behavior of the function Aj(n).
For this purpose we make use again of the scale transformation (3.1) and the
integral representation (3.2) wherein o and a_ have their original definitions

(2.9) and (2.10). To evaluate (3.2) we first construct the power series expansion

1
term of an Airy function of negative argument, and hence is a solution of our ;
(o - oo)a‘(o + 00)0‘+ =0 Y ocow ; lw| <1, (3.13) 7

Y
1
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where w = oo/c and the expansion coefficients

are given in terms of the familiar binomial coefficients.

The expansion on the

(3.14)

right of (3.13) is absolutely convergent for |w|<l because it arises from the multi-

plication of the two absolutely convergent binomial expansions corresponding to the

factors (o-oo)a' and (o+oo)a+.

multiplication of absolutely convergent series.6
is absolutely convergent for ]wl=1-6, where ¢ is an arbitrarily small number, it
also follows that the series in question is uniformly convergent7
Hence, we can replace the product (o - oo)a’(c + co)a+ in the integrand of (3.2)

with the uniformly convergent series (3.13) and integrate term by term to obtain,

for j = 1,2,3,

e—z(a-x)/sg

A.(n) = p;
3 = p L

m

where the phase factors pj are given by (3.12), and where

- -g3/3-
gj(n,a)= J dcca2e0/3°n

C’ (A5

8
are the same functions introduced by Rabenstein.

is chosen such that |a| > o, everywhere along the contour, which is the condition

for the convergence of the series (3.13).

This result follows from Cauchy's Theorem on the

Since the power series (3.13)

m
c 00 gJ (n,a-m)

In (3.16) the contour C'(Ai)

for [w| <1 - 6.

(3.15)

(3.16)

bl

B A d i)

T Py Y

. m oa-A_&

P Ry
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A convenient expression for the functions gj(n,a), j =1,2,3, is obtained
by expanding the factor exp[-on] into a power series
-0 ot k k_k
e 9N = YLG)/kt]oen (3.17)
k=0
which is uniformly convergent in the finite o plane, |o| < ». Introducing

(3.17) into (3.16) 3and integrating term by term we obtain

g;(n,a) = ) L)X 7k ok J do 0¥ 2K 7073 : (3.18)
k=0 o)

Putting y = 03/3, the integrals in (3.18) become

4 y(a+k-4)/3

y

3
I (k) = f do %2k 70°/3 _ g(a+k-4)/3 j d , (3.19)

C'(Aj) Hj

where the contour Hj is the image of C'(Aj) under the transformatien.

To ascertain the shape of Hj consider, for example, C'(A3) which begins at
infinity with arg o = 0 and proceeds to infinity with arg o = 2n/3. Under the
transformation, y = 03/3, the contour Hj begins at infinity with arg y = 0,
encircles the origin in the counter-clockwise direction, and proceeds to infinity

with arg y = 2n. Therefore, Hy is simply Hankel's contour and we can write

13(e,k) = 3(@*k-e)/3 J(O+)dy eV ylork-1)/3 , (3.20)

=+

which can be evaluated in terms of gamma functions.
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Proceeding in an entirely analogous fashion, we ascertain that the contour
H, starts at infinity with arg y = 27, encircles the origin, and terminates at
infinity with arg y = 4n, whereas the contour H; begins with arg y = 47 and ends

with arg y = 6n. Thus, introducing the abbreviation
p = ola,k) = (4-a-k}/3 , (3.21)
and making use of a generalization of Hankel's integral representation,9

Ii(o,k) = 2ni explri(1 - p)(7 - 2§)1/(3°r (o)} . (3.22

Making use of (3.18) and (3.19) we obtain the expansion

Z

) 0[(-)k/k!]Ij(a,k)nk , (3.23)

gj(ﬂ,a) =

where the functions Ij(a,k) are given by (3.22). Finally, using (3,15) we

obtain the power series expansions

A T SR (L7 TE SRR T (3.24)

A-(n’a) =p
J J m=0 k=0

where the pj are the phase factors given in (3.12) These functions, for j = 1,2,3, ‘
correspond to their asymptotic counterparts Aj(n) given by (3.7) and are subject

to the same argument ranges for n as given by (3.4).

- e - P UL P Wy — ! )
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4. The Solutions Bj, éj’ and B,

The functions Bj’ éj’ and B, are solutions of (1.3) and are given by the
integral representation (2.7), where the corresponding paths of integration are
shown in Figs. 3(a) or 3(b). Since we are unable to directly evaluate these
integrals, we resort to a perturbation expansion based on the fact that e? << 1.
Thus expanding (2.7) in a power series in €2 we show in the Appendix that, to

first order in €2,

U(O‘:BI’BZ’EZ;Z) = U(QJBI’BZ’O;Z) + EZ(BEZU) 2
€“=0

u, - ez[h(uo)/482] . (4.1)

where u(a,Bl,Bz,ez;z) is any of the solutions By» Bj or B.

and u, is the

J
corresponding solution evaluated at €2 = 0. The expression for h(u,) is given 3
in (A.2.6) in terms of u, evaluated at shifted values of the parameters a and 8;. ?
We observe that the functions uo(z) are solutions of the reduced (e? = 0) i
second order differential equation (1.9) and are given by the integral represen- ﬁ
tation i
i
u,(z) = [ (s - B)% (s + B* e75% ds (4.2)
C

where a, and a_ are given by (3.6) in terms of o and B, = 8,/28,. The contours %
of integration in (4.2) are those associated with Bj’ éj’ and B, and respectively 5
yield functions denoted by bj’ Bj and b,. Finally, if we introduce the trans- .]
formation u(x) = g(x)exp(-x/2) with x = 2B,z into (1.9), we obtain Kummer's differ- '1
ential equation10 j
]

b

. . e o —
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B I

e+ @-x0g® - (@2 - 8)gm =0, (4.3)

which has two independent solutions that, for our purpose, we write as

) g,(x) = M(a/2 - By,a5x) ; (4.4)

gZ(X) U(a/2 - B,,a;x) , (4.5)

where M and U are Kummer functions. Since the properties of these functions

are well-known, we proceed to obtain expressions for bj’ Bj’ and by, in terms

of Kummer functions.
The function b, obtained from (4.2) by integrating along the contour
associated with B, is related to the Kummer function M(b,c;z). This can be i
demonstrated by using the transformation ;
1
]
s = 28,(t - %) (4.6) ﬁ
in (4.2) to obtain
(1+) %
b, = (28,)%7" P27 g (t - 13 2+ e72F22 g 4.7)
The contour in (4.7) is the image of C(BO) under the transformation (4.6). It i
starts at the origin, circles the point t = 1 in the positive direction and
returns to the origin. The integrand in (4.7) is bounded everywhere along the
contour for |z| < = so that an expression can be obtained for b, that is valid ]

for the entire z-plane, as is shown in the following.
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The integral representation for the Kummer function M(b,c;z) for

Re(b) > 0 ist!

(1+)
I'(c) T(b-c+1) zt tb-l
271 T(b) €

- P g

M(b,c,z) =
‘ 0

P
1
LN
.
:

y

iiF.
-
b

From (3.6) one has a, = a/2 + B, - 1, where B, = 81/2B, is B evaluated at €? =
and since a, B;, By are taken as real and positive, Re(a/2 + B,) > 0 so that

(4.8) can be used in (4.7) to obtain

-

_ a-1 &£/2 2ri T'(a - a) .
bO = (282) e { I‘(Cl) 1-.(1 _ a) M(a‘a:aa'g) _5

where a = o/2 - 8, and £ = 2B,z. Finally using the Kummer transformation

M(b,c;2) = ezM(c-b,c;-Z)
yields

_ a-1 -&/» 2ri T(a - a) . o
b, = (282) e {ITTET*TTT—:_Ej'M(a’a’g)_j

An expression for B,, accurate to order €2, can thus be obtained by combining

(4.1), (4.11) and (A.2.6):

_ a-1 27i T(a - a) -£/2 | 2, 4 .
By = (282) Sy T a) © {_[1 - (€820, M(a,a;58)

2 RE e

- (e2/128,)[M(a + 1,0 + 4;6) - M(a + 3,a + 4;8)]

0 e e At Bt
’ 7 .

B
- (77128, + €?B,/4)[M(a + 2,0 + 2;6) - M(a,a + 2;8)] ¢
2 2 ,

From (4.12), the value of B, can he found to order e” for any z with |z| < w,

‘m te e lm e A e m meao o aaf dAAAA o™ mlata ol y 2V . - en A e - -

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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The solutions Bj and éj are related to a linear combination of the Kummer
functions M(b,c;z) and U(b,c;z). The contours associated with the solutions
Bj and éj go to infinity in the sector j in accordance with (2.15) and the

integrand of u, as given in (4.2) has the asymptotic value s*7* ¢, In order

to insure that the integrand remains bounded for all o one must require that

lz| > |z,| > 0 (for some given z), and

-m/2 < arg(sz) < n/2 . (4.13)
However, the subscript j already implies an argument range for the variable of
integration s along the contours associated with the solutions Bj and ﬁj' As
given by (2.15) these ranges are, for the solutions B,

2n(2 -~ j)/3 - n/6 < arg s < n/6 + 2n(2 - j)/3 . (4.14)

From (4.13) and (4.14) one finds that the solutions bj are well-defined only

over certain regions of the z-plane, namely,

21(j - 2)/3 - 2n/3 < arg z < 2n/3 + 2n(j - 2)/3 . (4.15)

Using (4.2) and the transformation ?

A

)

s = 28,(t + %), (4.10) ]

yields meie ]
by = 26)% 7 e 2 [ e« P e ar 4.17) ]

-1 L

bt




L1! where the angle 0 lies in the sector j. The paths of integration given in (4.17)
b

are the image of the contours corresponding to the solutions Bj under the trans-

Camt i)
DR

~

formation (4.16). Similarly, from the definition of the Bj contours, we have

h wel (0 + 2T)

- BJ. = (28)% Y 2 g t2-(t + 1D et ar . (4.18)
L -1

- . . .12
The integral representation for the Kummer function U is

(0+)

i9

c-b-1

Ub,csy) = (1/2mi)T(1 - b)e °™ J 2711+ 1) eVt ar . (4.19)

we

In the integral of (4.19) the contour starts at infinity with argument 8, circles
the origin in the positive direction (i.e., cuts the negative t-axis) and returns

to infinity with argument 6 + 2m. Since the integrand of (4.19) is analytic in

= the region between the origin and t = -1 the contour can be extended to include

-

. the point t = -1; hence

h (0+) 1 wel (8 + 27)

- = J + J . (4.20)
:_ wele mele -1

,:4..

E! Using (4.20) and (4.17)-(4.19) yields

P.‘

3 . ima

b - a-1 2mie’ ~ -£/2 ,

o bj - bj = (283) (L - a)e U(a,0;&) . (4.21)

R5-D

Using (2.23) together with (2.17) one finds that

i - " A
B, = [el?™ _ 177! [(BJ. - B - By (4.22)
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which, for €° = 0, becomes

Using (4.21) to replace the combination Bj - bj in (4.23) and employing the

identity r(a)r(l-a) = n/sin (am) gives

-ima
- 28)% 'ra)e ™% v(a,aze) - E—-D0
2i sin(na)

The relation (2.23) for €2 = 0 gives

Bj = b;(0,1) + b, = et

Using (4.25) to replace bj by Bj in (4.24) gives

-ima

_ a-1 i2ma -£/2 e by
bj = (287) e T(a)e U(a,a;€) 2i sin(ma)

With (4.11) the relations (4.24) and (4.26) can be used to express bj and Bj

entirely in terms of the Kummer functions U and M,

(2f52)0t-'1 e-{'/?'{l"(a)U(a,a;E,) B e g M(a,ua,f)}

bj(ﬁ) - sin (na‘F(a)F(l a)
and

) _ a-1 5/2 ] . . r_exp(-ira)l («-a) .

by () = (287) (r(a)exp(2ria)U(a,aii) - rmiBatrayr i M),
where again a = o/2 - £ and ¢ = 2z,

(4.21)

(4.25)

(4.26)

{4.28)

;;-.A'.‘.. -

A s aa i B
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Expressions for Bj and éj valid to order € can be obtained by using
(4.27) and (4.28) in the expansion (4.1) in the same fashion that the expres-
sion (4.12) for B, is obtained from (4.1) using u, = b,. We do not write out
the corresponding expressions for Bj and ﬁj here but only note that the functions
b. and b, deduced from (4.2) are obtained under the restriction |z| > |zO| > 0
and within the argument range (4.15). In other words, Bj and Ej can not be ecvaluated
at the point z = 0 using the expansion in €2 technique. The problem of applying
(4.1) at the origin for the solutions Bj and éj arises because the function
U(a,x;7) in the expressions for bj and Bj is singular at the origin (z = 0) for
@ > 1. However, the behavior of the solutions Bj and éj for |z| > 0 for all values
of o can be found by employing the relations (2.18)-(2.23). For example, multiplying

i2no

(2.22) by e and using (2.9), (2.10) and (2.17) yields

N
Ap(0,1) = -B1(0,1) + e*“" B,y . (4.29)

Using (2.23) with j = 1 in (4.29) and (2.19) and (2.22) in the resulting

expression gives
~ '2 -
By = [e"“™ - 117! {A,(0,1) + A; + A3(0,1) - B_} . (4.30)

The expression (4.12) can be used to evaluate B,, for all lz| < =, while the power
series expansion (3.24) can be used to evaluate the functions Aj for small argu-
ment (|z| << 1). Thus, expressions such as (4.30) are particularly useful in

evaluating Bj and éj in the neighborhood of the origin. For large values of |z]|,
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on the other hand, Bj and Ej are more conveniently expressed using the ¢’

et &

expansion of (4.1) in terms of bj and Bj’ respectively.

Since the solutions related to the Kummer function U(a,x;£) contain the

combination Bj - bj [c.f. (4.21)] it is useful to construct the combination a
§3 - B3 in a form that can be evaluated as |z] - 0. To do this we multiply

(2.23) by e *2"™- and use (2.17) to obtain

B3 = B3(0,-1) - B,(0,-1) . (4.31)

Multiplying (4.30) by e 12" and using (4.31) in the resulting relation gives

By = [e1?™ - 117! {A, + A;(0,-1) + Az - B,(1,0)} . (4.32)

Finally, combining (4.30) and (4.32) yields the desired combination ;
By - By = [2™ - 117! {(e12™- - 1)[a, + A;(0,-1) + A3]~ (U - "B} 1
(4.33) .
R

Expressions similar to (4.33) involving B, and B; rather than B3 can be found
by using (2.18)-(2.22). The expression (4.33) can be evaluated at integer values Y
of « by assuming that §3 - B3 is an entire function of o and then using 1
I.'Hospital's rule to obtain :
"
- 3
By - By = {; [A,(0,1) + A5(0,1) + A} + B,(1,0)]/2 3
e (1/271) (2™ - 1)[0 As + 2 A1(0,-1) + B A3] k
a a a n

+ (1/2n1) (7™ - 10 B | . (4.39)
a=n
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. where n = 0,21,+2,... . The expressions (4.33) and (4.34) show that the com-
bination B - B3 is finite and non-singular at the origin for all values of «a.

On the other hand, the expression (4.21) with j = 3 indicates that 63 - by is
singular at the origin for a > 1. Thus the exact solutions of (1.3) are
rigorously well behaved at the origin although the restricted expressions obtained

2

by using an expansion in e€“ indicate otherwise, which is a consequence of the

singular perturbation character of this problem. Expressions for B, - B, and
B, - B; are readily obtained from (4.33) using (2.18)-(2.23).

Finally, it is instructive to consider a special case in which the parameters

a and B have the values

@ =V B =v/2+yu , {4.35)
where v is a positive integer and n = 0,1,2,.... In this case
a+ =V - 1 + u (4.36) 4
and ?
1
a_ = -(p + 1) . (4.37) :
4

In the integral representation (2.7) there is now only an isolated pole of
order u + 1 at the point s = B,. The points s = *B, are no longer branch points
and the s-plane is no longer cut by branch lines, so that Bj(O,l) = Bj and (2.23)

then gives

it AT as ANk badsdicedbil

(4.38)




LT

-31-

s

PR Ak Aem g

- The contour B, now encloses the pole at s = B8, and from Cauchy's Theorem we
{

immediately have

B, = 2miR(B,) , (4.39)

AN e

where R(B,) is the residue of the pole at s = B,. Using (4.36) and (4.37) one

obtains from the integrand of (2.7) the expression

- 4‘ ﬁr—'-' ‘Q..—‘(

U " _e2e3 -
R(8,) = 1 4" [(s + Bz)v 1+yu e € s3/3 e sz]

(4.40)
p! ds”

s=f,

Making use of Leibniz's Theorem the expression (4.40) can also be written as

S S G Y

u u-Jj ~ <l
R(B,) = —F V] B, 4= [(s + )" &757] , (4.41)
u'j=0 ] J dSu-J
s=8,
where ;) is the usual Binomial coefficient and
]
_ d _e253/3 !ﬂ
el ;;?-(e ) : (4.42) -
S=62 e
. . 'h
By defining the small quantity o, = 62/382 and letting x = (s + B)z, (4.41) becomes !q
3
-0, /3 ~ oy c 1ol ,

R(R,) = S 22 ¥ [V [o,/8,1 2"V T, |
ul . ) Q ) 4
J:O 3
*
u-j - :
« d — [x" 14U -Xq o, (4.43) ]
dx"™) $=2B,z 3
]
3
1
1
3
1
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where the polynomials T, are given by

k]
3 h| _¢3/
T, = %0 /3 8 (73 (4.44)
3 e
t=0,
and T, = 1. The expression (4.43) can be further simplified by using Rodrigues'

Formula13 for the Laguerre Polynomials

v=1+j 1 X _1=-v+j du_j v-1l+, -x
) A = —_— .
wio W EEpre s T g e T e ) (849
Using (4.45) in (4.43) one obtains from (4.39)
~ - —Rny =g.3
B, - B, =B, = 2nt (28,)V71 e 7B22 790°/3
[ u (20 )7 1
0 v-14j3 -~
x } = T, L (2822) (4.46)
1_j=0 I R |
for y = 0,1,2,..., and where z = z + 003/82. Using (4.44) to evaluate terms
in (4.46) results in
B, = 211 (26,)°7" &7P2% L7 (28,2) + 0G0, %) (4.47)

Note that 003 = 62823, so that the correction terms to BO as given by (4.47)

are of order e2.
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: . 5. Application to Physical Problems

In applying the solutions of (l1.3) to a physical problem one needs to
evaluate the solutions Aj’ Bo’ Bj and Bj in the vicinity of the real axis
(Im z >~ 0+). However, the expressions given in Secs. 3 and 4 for some of
the solutions are valid only in certain sectors of the complex z-plane. Since
some of these sectors contain only a portion of the real axis, the expressions
given must be extended by means of analytic continuation to include the entire
regicn of physical interest. The process of analytic continuation leads to a
mixing of the solutions of the thermal and cold plasma classes. This mixing
embodies the physical phenomenon of mode conversion.

In constructing analytic continuations of solutions we will take the
imaginary part of the independent variable 2z to be small and positive. This
assumption leads to exponential decay of waves in the direction of propagation
and is justified on physical grounds because it corresponds to adiabatic switch-on
of the exciter at frequency w. The analytic continuation of the solutions of
(1.3) can be accomplished by using the relations (2.18)-(2.23) which are derived

by applying Cauchy's Theorem to the contours defining the various solutions.

The asymptotic expressions for the solutions Aj as given by (3.7) are
valid in sectors of aperture 4m/3 as given by (3.4). Since che solution A; is

defined in the sector 57/3 < 8 < 31 (z = |z|e16), which includes the entire region

of physical interest, it needs no analytic continuation. Just above the negative
real axis 0 = 37 - A, where A is a positive infinitesimal, the term exp(-ig) in

the asymptotic expression (3.7) for A; varies as exp|¢|. Thus A; is exponentially
growing near the negative real axis. Along the positive real axis where # = 2n + A

the term exp(-ig) varies as exp 1lcl s0 that A; represents an outward propapgating

,
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wave in the WKB sense. The solution A; is defined in the region 7/3 < 8 < 5n/3

which includes the region of physical interest only near the negative real axis

where 6 = 7 - A, The term exp(-iz) in (3.4) for j=2 then varies as exp(-|z|) so
that A, is exponentially decaying for Re(z) < 0. To analytically continue A;

we use the relatioms (2.18), (2.20) and (2.22) to obtain (see Fig. 4)

Ay, = -A3 - By + B,(1,0) - A;(1,0), (5.1)

for Re(z)> 0. All of the functions on the right-hand side of (5.1) are defined
in sectors that include the region just above the positive real axis as can

be verified by (3.4) and (4.15). The relation (5.1) indicates that the solution

A, undergoes mode conversion when the Re(z) changes sign. In this paper

we use the term mode conversion to denote a process wherein a solution

of one class produces a solution of the other class. For example, as indicated
by (5.1), a solution of the thermal class, A;, near the negative real axis,
leads to solutions of the cold mode class as well as thermal mode class
solutions near the positive real axis. Finally, the domain in which

the solution A3 is defined includes the region above the positive real axis but

not the region above the negative real axis. Near the positive real axis 6 = A

G

for j=3 and A3 varies as e_i thus representing, in the WKB sense, an inward
propagating wave. Using (2.18), (2.21) and (2.20) to analytically continue Aj

we find that (see Fig. 4)

A3 = —A1(0,~1) - B3 + 53(1,0) - Ay (5.2)

e e [T

e e aca .
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where all of the functions on the right-hand side of (5.2) are defined

in the region just above the negative real axis.

The expressions derived for the solutions B, and Ej are also valid only
in certain sectors of the z-plane as indicated by (4.15). The solutions B; and
B; are defined for the entire region above the real axis and need no analytic
continuation. The solutions B, and ﬁz are defined only in the region above the

positive real axis and must be continued by using (2.21) and (2.22) from which

we obtain

B,

B3 + Ay(0,-1) (5.3a)

and

B, = By + A} (5.3b)
Both functions on the right-hand side of (5.3a) and (5.3b) are defined in the

region just above the negative real axis. Bj and 52 both undergo mode conversion

when Re(z) changes sign as indicated by (5.3a) and (5.3b) because

they generate a solution of the thermal mode class in addition to a solution

of the cold mode class. The solutions B; and B, are defined for the region just

above the negative real axis and can be continued to include the region just

above the positive real axis by using (2.18) and (2.19) to obtain

o}
—
0]

82 + A3 . {5.4a)

and

B, + A3(0,1) . (5.4h)
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Again the solutions B; and El undergo mode conversion when Re(z) changes
sign.

In addition to having expressions for the solutions in the region above
the real axis a useful set of four linearly independent solutions must be

selected from the general set in order to solve a well posed problem of

e it

E - physical interest. In particular, we have in mind applying the solutions of

(1.3) to the inhomogeneous problem in which a driving source is present in

Iy 1 o ASELAL A
. 7 N - .
T

the plasma. We thus shall discuss four linearly independent solutions that
é; are convenient in constructing a Green's function for (1.3). The linear
independence of a solution set can be formally established by evaluating the
system Wronskian. Rather than perform this calculation we defer it to a

later paper and only present here a heuristic argument for linear independence.

these beforehand in choosing our solution set. The boundary conditions we

}! -

F".

ﬁii A Green's function must satisfy certain boundary conditions and we impose
[

impose are: 1) wave-like solutions must correspond to transport of energy away

from the source, and 2) solutions must be bounded as |Re(z)| -+ o, Since the

thermal mode and cold plasma mode classes of solutions have vastly different

R W

scale sizes away from plasma resonance, our strategy for identifying a linearly

MALAR AR AT A e
prajgymey

independent set is to select one pair of linearly independent solutions from
each class. We are then assured of the linear independence of pairs of solutions 1
from different classes because of their different scale sizes. From the cold :
mode class of solutions we choose the pair B, 62 while from the thermal class h

of solutions we choose the pair Aj, A,.

A
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From the solution pair B, Bg we next construct a pair of linearlv inde-
pendent solutions, one of which is bounded as z + =, while the other is bounded

for z » -~. This solution pair is

=]
i

= [(28,) 1% 21i] (=) e T By (0, By ,82,62,8) = By(a,Ry,Ra,c0,0)) (5.5)
R

l-c . —imoy . . ) . )
BL = [(282) /2n1]F(—a+) e +{B2(a,—bi,82,—62,-g) = Bo(u,=ryyrny= =)
(5.6
Note that in (5.6) we have used the transformation (2.12) so that we are assured
BL is a solution to (1.3). The normalization coefficients in (5.5) and
(5.6) have been determined using (4.27) and (4.28) and are chosen so that
the expressions reduce, when €2 = 0, to the simple forms given below,
-£/2
BR = e U(a,n35), (5.7)
+
BI = e &/2 U(a - a,a;-5) , (5.8
. 14 .
where a = 1/2 - 60. In the notation of Slater these two solutions are
then
-£/2
BR = e VAT (5.9)
_F/Q -
R = 2l (5.1
L~ ¢ 7

!
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so that using (5.9} and (5.10) together with (4.1) we find that the Wronskian

of BR and BL is
W(B,,B,) = 1T (@/2%85) (13m0 | g(e2y | (5.11)

where £ = 285,z. In (5.11) we have again assumed that Im(z) is positive and have
ignored contributions to the Wronskian arising from mode conversion. Mode conver-
sion contributes terms to the Wronskian that are a product of cold and thermal terms

and thus are rapidly oscillating. The function BR is bounded as z approaches

positive real infinity while B, is bounded as z approaches negative real infinity.

L

The asymptotic form of the two thermal modes A; and A, has been discussed
before. The function A, is exponentially decaying along the negative real axis
while A} is exponentially growing. Thus A, and A; are clearly linearly independent.
Near the positive real axis Aj represents an outward propagating wave while
from (5.1) we see that A,, while undergoing mode conversion, contains an Az term
which represents an inward propagating wave so that A; and A, are again linearly
independent.

The solution set BR’ B, Ay, A} is convenient for constructing a Green's

L’
function. If we denote the source location by z' then the solution pair BL’ A,

can be used exclusively for Re(z-z') < O because they are the only pair bounded

at negative real infinity, while the remaining pair B A} can be used exclusively

RD

for Re(z-z') > O because they are the only pair bounded at positive real infinity.
While we do not construct a Green's function here we can use the solution set

BR’ Ay, B, A, to illustrate the type of mode conversion that may occur in a

L!

plasma with a driving source.

-

P




As an illustration of mode conversion in a physical problem, ~onsider the
solution BR for Re(z) > 0. This cold mode solution as given by (5.5) depends
upon B, and ﬁz which can be analytically continued to the region just above the

negative real axis by using (5.3a) and (5.3b) from which we obtain, for Re(z) < O,

By = [(282)1~a/2ﬂi]F(-a_)e_iﬂa' {§3(a,81,32,€2,€) - B3(G’31,52,€2,E)}

real axis while the combination, B3 - B3, is defined in the region above the

negative real axis and according to (4.21) is proportional to the hypergeometric

function U(a,a;t) for €% = 0. The expression (5.12) illustrates mode

conversion in that a solution of the cold class on one side of plasma resonance

consists of a combination of cold and thermal modes on the other side of resonance.
We note that in this particular example the amount of mode converted thermal

mode is proportional to L/I'(l + «_) , and thus can be zero when

It
|
>

Il + a_ = of2 - B L, (5

where v = 0,1,2,.... When o is an integer, as is the case for a plasma,

the condition (5.13) is identical to (4.35). 1In Section 4 we found that under
these conditions the cold mode solutions were everywhere proportional to B

which in turn could be expressed as a sum involving Laguerre Polynomial~ [see
(3.46)]. Thus at certain special values of the parameter £ the phenomenon of mode
conversion does not occur in the sense that the amplitude of the thermal mode is

zero and furthermore, at these values of £ the cold solutions are proportional to

Laguerre Polynomials for ¢’ = 0.

x - [28) 7/r (1 + a)Je T Ay (e, By,82,€7,E) (5.12)
F‘ We have already indicated that A; is exponentially decaying near the negative

.13)

it
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The quenching of the mode conversion process does not occur for all

possible solutions, e.g., the solutions BL for Re(z) < 0, corresponding to a
source located in the region z > 0. Using (5.6) and the relations (5.3a) and
(5.3b) with the proper parameter values, we obtain the analytic continuation,

for Re(z) > O,

B = [262) ! ™%/ 2n1]r (240,) 7™ (By(a,-8y,82,-62,-6) = B3(o,-By,82,-c2,-6)}

U (ap] T A (0,08 ,85,-€7,-E) (5.14)

- [@s)
Since a and B are positive, 1/F(l+a+) = 1/T(a/2+B) is never zero and mode conver-
sion always occurs in this case. Furthermore, the mode conversion process is not
restricted to the generation of thermal modes by cold modes. The thermal modes
also undergo the mode conversion process and generate cold modes. Although the
solution A; does not undergo mode conversion when Re(z) changes sign, the
solution A, does as is illustrated by the analytic continuation of A; given in

(5.1).
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6. Conclusions:

By applying the Laplace integral technique we have obtained integral
representations of the solutions of the fourth order differential equation (1.3).
The solutions are distinguished by the contours along which the integral is
evaluated. The solutions Aj are obtained by integrating along contours having
both end-points at infinity and have been identified as helonging to a class

of solutions characterized by short scale lengths and thus are referred to as
thermal modes. The solutions Bo’ Bj and éj are obtained by integrating
along contours with at least one end-point at the branch point s = -¢. and
belong to a class of solutions characterized by long scale lengths and are
referred to as cold modes. The properties of the exact solutions Aj’ BO, Bj
and éj have been elucidated by expressing them in terms of more familiar
functions using power series and asymptotic expansions.

The solutions Aj have been evaluated for large and small values of the inde-

pendent variable z by using different techniques. A power series expansion in

z has been derived in (3.24) in order to determine the solutions Aj in the neighbor-

hood of the origin. The solutions Aj are clearly finite and well behaved in the

vicinity of the origin. For large values of z the functional form of the solu-

tions Aj has been determined in (3.11) using the saddle point method of integration

to obtain the leading term in an asymptotic expansion. For real values of the
independent variable these asymptotic expressions represent either exponentially
decaying or growing solutions or propagating wave-like solutions.

Expressions for the solutions B, Bj’ and éj have been obtained by expanding
the integral representation in powers of e€2. This technique allows an expression
to be obtained for the exact solutions B,, B., Ej in terms of the corresponding

]

solutions b bj’ Bj of the second order differential equation obtained from

02>

(1.3) by setting ¢2 = 0. The expansion (4.12) obtained in this manner for the
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solution B, involves the Kummer function M(b,c;z) and is valid in the entire
z-plane (|z| < ). In particular the solution B, can be evaluated in the
neighborhood of the origin using (4.12) and thus is useful in evaluating
other members of the cold mode solution class near the origin.

An expansion in powers of €2 can be obtained for the solutions Bj and éj
but involves the restriction |z| > |z,| > 0. The expansion involves the
corresponding solutions bj and Bj which contain the Kummer function
U(b,c3z) which is not bounded at the origin for Re(c) > 1. The €2
expansion is kelpful in evaluating the solutions B, and ﬁ. for large
values of z. The solutions Bj and Ej can be evaluated in the neighborhood of the
origin by using Cauchy's theorem to establish relationships among the various
solutions as given in (2.18)-(2.23). Thus the solutions Bj and ﬁj can be
expressed entirely in terms of various combinations of the solutions Aj and B,
as shown for 53 in (4.30). Since expressions for the solutions Aj and B,
valid in the neighborhood of the origin have been obtained the solutions Bj and
ij can also be, in principle, evaluated there. Unlike the associated solutions to

the second order differential equation, bj and Bj’ which can have divergent be-

havior at the origin for o« 2 1, the solutions B, and Ej are always finite at

b
the origin. The physical interpretation of this result is that the inclusion of

thermal effects keeps the amplitude of the electric field finite at plasma reso-
nance through the production of short scale thermal modes. The production of short

scale waves near plasma resonance involves the process of mode conversion.

L}

For certain values of the parameters, a and B, namely o a positive integer 9

and 8 = €28,3/2 + B,/28, a positive half-integer, the topology of the inte- »}
gration plane is greatly simplified. While the sector structure in the integration .3
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plane remains, thereare no branch points but only an isolated pole. The
quantities a, and a_ have integer values under these conditions so that the
phase factors exp(i2mma,) and exp(i2wna_) are unity and as indicated by (2.17)
all solutions X(m,n) are equivalent to the solution X evaluated on the principal
sheet. The combination of solutions Bj - B. is equivalent to the solution

B, as indicated in (4.38). Furthermore, the solution B, can be expressed as

a series of generalized Laguerre Polynomials as given in (4.46) which is

il

convenient for numerically evaluating quantities for physical applications.
Finally, we note that as shown in (4.34) the combination B3 - B3 generally
contains an admixture of the thermal mode solutions A.. For these special

J
parameter values, however, the combination §3 - B3 = By, hence it contains no

daaali ittt

thermal mode solutions. Physically this indicates that mode conversion does not

. 5
occur at these special parameter values.l

The asymptotic expressions given for the solutions Aj’ Bj and Ej are
defined in certain sectors of the z-plane as given by (3.4) and (4.15). Not all

of these sectors contain the region just above the real axis which is the region

CasBEN ad.

of interest in physical applications. The solutions can be analytically

continued, however, and it is this process which gives rise to the phenomenon of

mode conversion. A solution of either the thermal or cold mode class on one

side of plasma resonance gives rise to a combination of both classes on the

e A B aa A St

vther side of resonance. Physically the mode conversion process serves to
limit the amplitude of the solutions at plasma resonance. Specifically, the
solutions of the purely cold plasma (£2 = 0) which exhibit singularities at
the origin now correspond to solutions which are finite at the origin but
produce thermal modes through the mode conversion process which carry wave

energy away form the resonance region. In addition, for special values of the
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parameters, it is possible to construct cold mode class solutions which are
t‘ finite at the origin without generating thermal mode class solutions. This
quenching of the mode conversion process corresponds to a change in the topology

of the integration plane in which the branch points become an isolated pole.
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APPENDIX

A.1 General expression for the derivatives of u(z)

The nth derivative of the function u(a,Bl,Bz,ez,z) with respect to z,

(n)

which we denote as u » can be obtained from the integral represewntation (2.7).

u(n)(a,Bl,Bz,ez,z) = (-)n f sn(s-Bz)OL‘(sﬂSz)OL+ exp(-s3e?/3-sz)ds , (A.1.1)

C

where C is any of the contours discussed in Section 2. To find an expression for

the first derivative we note that

s = (1/48)[(s + B2 - (s - B,)?], (A.1.2)

together with

u(a+2,61+282,82,82,z) = f (s+82)2(s+82)a+(s-82)a' exp(—s382/3—is)ds ; (A.1.3)
C
and
u(o+2,8,~285,85,62,2) = [ (s-8,)2(s+8,) "t (s-8,)"" exp(-s3¢?/3-2s)ds . (A.1.4)
C

Using (A.1.1) with n = 1, the expression (A.1.2) together with (A.1.3) and (A.l.4)

gives

U(l)(a981,82,€2,2) = (—1/462)[\1(&*'2’814'282’82,6292) - U('l+2,[\'1"2.3: s )Z)]
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The second derivative of u can be found in a similar fashion by using the

z expression
4
b
;
h
s

s2 = (s - Bp)(s + By) + B2 ; (A.1.6)
j we then obtain

u(‘)(a,sl,sz,ez,z) = u(a+2,81,R,,e2,2) + B,° ula,Bsy,fr,e%,2) . (A.1.7)

Repeated use of the expression (A.l1.7) yields

; n | . ,
WG (a,81,80,6%,2) = ) [ 1] 5,2 Dy(ar23,81,85,6%,2) (A-1.8)
j=0 |
where n = 0,1,2,3,... and g: = n!/(n-j)!j!, are the binomial coefficients.

Application of (A.1.5) to (A.1.8) then yields

n ’ .
u(2n+1)(a,81,82,€2,z) = (1/[‘) Z ? BZZ(H_J)-I

3=0

« [u(a+2(§+1),B1-285,8,,62,2) = u(a+2(5+1),B +2B0,80,6%,2)] . (A.1.9)

1
1
1
1
1
:ﬂ

4.2 A series expansion of u in powers of el

‘In this appendix we outline the procedure for obtaining a series expansion

ey, ,t2,z) in powers of €’ and explicitly calculate the first two co-

YT OUUPERY ey

sfficients of this series. We first assume that the integrand of (2.7) is an

malvtic function of €< in the vicinity of ¢’ = 0 and expand a portion of the

Ak

—




integrand in a Taylor's series about the point € = 0. We will discuss the

rRan Nl sk A acan ghill AnChuC
p=a SUEAIOR S o tht

validity of this assumption later. The integrand of (2.7) depends on e in-

directly through the parameters o,,o_ and directly as expl-€2(s3/3 + By2s)].

Thus part of the integrand in (2.7) can be written as

(s + B2)™* (s - B2)" expl-e?(s3/3 + B27s)]
= (s + By (s - 8% [1 - €2{s3/3 + By?s- (B23/2)anl(s+8,)/(s-8)1}  +.....
where we have explicitly shown only the first two terms of the Taylor series

expansion. The parameters a_ and a_ are simply the values of o and o_ at €2 = 0,

namely,

= 2
a, = a+(e = 0)

a/2 - 1+ B1/28, 3 (A.2.2)

o (62

Y]
n

0) = a/2 - 1- 8;/28, . (A.2.3)

Using (A.2.1) in (2.7) we obtain

u(a,Bl,Bz,Ez,Z) = f (s - Bz)a'(s + 82)a+ e-ZS

c

ds

- e208,2[ s(s - 8)% (s + B)%* ¢ %%ds +(1/3)] s3(s - 87" (s + By e *ds
c C

~(8,372) anl (s+£5)/ (s-F2) 1 (s + 82)%* (s - 8,)%" e %%ds} + .... (A.2.4)
C
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Noting that

éln[(s + B2)/(s - B)1(s + B (s - 8T 7P ds

= 28, 5—%—1— é (s + B)** (s - 8,)%- %% ds

and using (A.1.1) together with (A.1.9) we obtain

u(o‘JBl;BZ’ez,Z) = U(Q)B])BZ)O;Z)

-(e2/48y) [1/3Ju(a + 4,8, + 285,8,,0,2) + [1/3 + B,%Ju(e + 2,6; - 28-,£,,0,2)

—

-[1/3Ju(a + 4,81 - 2B,,B;,0,2) - [1/3 + Bo%Ju(a + 2,8; + 28,,8,,0,2)

2

- 5
482 3B,

u(a,Bl,Bz,O,z):} + ...,
Writing

e a ~SZ
Ur) - u(a,Bl,Bz,O,z) = [ (S - Bp_)q— (S + 82) toe s
) C

we can then cxpress (A.2.6) as

u(a,dl,B;,iz,z) = u(a,B],b-,0,2) + ((("F.U) i i

e =0

=u - Lzh(uo)/4B7 + ...,
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where h(uo) is a functional of u and denotes the term in braces in (A.2.6).
That is, once the functions u (which are independent of the magnitude of )
are known, the behavior of u(a,Bl,Bz,ez,z) can, at least in principle, be

determined for any value of e? provided the Taylor series expansion is valid.

For the Taylor series to be valid the functions ug must be analytic functions
of €2 in the neighborhood of ¢2 = 0. Furthermore, the coefficients in the Taylor
series must be bounded for all values of z. The functions u  are analytic
functions of &? only for the contours corresponding to the solutions BO, B, and Bj
because these solutions become solutions of the second order differential equation
when €2 = 0. On the other hand, u, integrated along the contours for Bo’ B, and
ﬁj can be singular for certain values of z and the coefficients of the Taylor
series are not bounded as z approaches these points. In the problem treated here,
for example, singularities in bj and Ej can occur at the point z = 0 for a > 1.

In this case the expansion in powers of €2 is valid only for z bounded away from
the origin, i.e., ]zl > izol > 0, for a given z s and for arg z restricted to the

appropriate sectors, as given in the text by (4.15).

. . - N - I [P W . I S 1 144...1




Figure Captions

Figure 1. Contours corresponding to solutions of (1.3) must proceed to infinity

in the shaded open sectors labeled 1, 2 or 3. The integration plane is cut along

adbeds

the real axis from B, to positive infinity and from -5, to negative infinity. The

plane of the paper represents the principal sheet with m = 0, n = 0 in (2.16).

Aind

Figure 2. The contours for the solutions A;, A, and A3 begin and end at infinity.
The contour for the solution A, passes onto the adjacent Riemann sheet with m = 1,

n =0 in (2.16) when crossing the branch cut.

P T T TR e e OND

Figure 3(a). The contours for the solutions B, and Bj have at least one end

point at s = -8,. Contours that cross the branch cut pass onto the adjacent

Y > N WL P A

Riemann sheet on whichm = 0 and n = 1 in (2.16) and are shown dashed. The contour ;

for the solution B3(0,1) starts on the sheet (0,1) and crosses onto the principal sheet.

e Ve

Figure 3(b). The same as Fig. 3(a) but for the contours corresponding to the

solutions Bj'

Figure 4. Contours for all of the solutions shown in Figs. 2 and 3 are combined

.

to facilate the derivation of the relations (2.18)-(2.23).

Figure 5. The position of the saddle point used to obtain an asymptotic represen-

oa
tala e s AT

tation for the solutions Aj is shown as a function of 6 = arg(n). The saddle point

starts just above the right hand branch cut for 6 = -7 and traces out a circular

ot
e <

path, crossing onto the adjacent m = 1, n = 0 Riemann sheet to end just below the

hranch cut at 0 = 37, The contour for the solution Ay lies in the (1,0) Riemann

sheet.
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